

2025 NASA Student Launch Team 509: Payload

Design Review 6

Authors: Matthew Archibald, Donovan Dwight, Nathan Hardie, Kyle Mahoney, Neil Maldonado

Everyone

Team Introductions

Matthew Archibald ME – Fabrication Engineer

Donovan Dwight ME - Test Engineer

Nathan Hardie CE -Communications Systems Engineer

Kyle Mahoney ME – Structural Engineer

Neil Maldonado EE - Data Systems Engineer

Faculty Sponsor and Advisor

<u>Sponsor</u> Shayne McConomy, Ph.D. ME – Teaching Faculty II <u>Advisor</u> Taylor Higgins Ph.D. ME – Assistant Professor

Department of Mechanical Engineering

Project Objective

Design and integrate a payload into a high-powered rocket for the 2025 NASA Student Launch Competition.

2025 NASA Student Launch: Payload

Project Overview

2025 NASA Student Launch

- Annual competition for universities nationwide
- Design, build, test, and fly and highpowered rocket
- New payload experiment every year

Payload Experiment Goals

- Collect a variety of flight data
- Transmit data via radio signals
- Safely transport four "STEMnauts"

Critical Design Attributes

Structural Integrity

STEMnaut Safety

Data C

Data Collection

Data Transmission

Recovery

Critical Design Attributes

Structural Integrity

- Payload must survive flight demos
- Payload must be reusable after flight
- Payload must remain secured **inside** within rocket

Critical Design Attributes

Structural Integrity STEMnaut Safety Data Collection Data Transmission Recovery

STEMnaut Safety

- Payload must contain four STEMnauts
- STEMnauts must survive the flight tests
- Creative aesthetic design

Critical Design Attributes

Data Collection

- 1. Velocity
- 2. Temperature
- 3. Apogee
- 4. Power Status
- 5. Flight Time
- 6. G-Forces
- 7. Orientation
- 8. Payload Orientation

Critical Design Attributes

Structural Integrity STEMnaut Safety Data Collection Data Transmission Recovery

Data Transmission

- Must transmit after landing
- Must transmit on 2-m band (144-147 MHz)
- Must transmit at or below 5W of power

Critical Design Attributes

Structural Integrity STEMnaut Safety Data Collection Data Transmission Recovery

Recovery

- System must be reusable after flight
- Adversarial terrain at launch site
- Difficulty recovering rocket payload system

Critical Design Attributes

Structural Integrity Ē. STEMnaut Safety () Data Collection Data Transmission Recovery

2025 NASA Student Launch: Payload

Critical Design Attributes

Structural Integrity STEMnaut Safety Data Collection Data Transmission V Recovery

2025 NASA Student Launch: Payload

Structural Integrity

Design Overview

- Two main components:
 - Payload Capsule
 - Payload Divider
- SLS printed Nylon-12
- Three chambers for electronics
- Secured at base of rocket nosecone

Structural Integrity

Reliability Analysis

- FEA to verify structural integrity
- Forces at landing calculated using momentum formula
- Loads calculated at worst case landing conditions
- Minimum factor of safety ~ 1.5
- Additional safety features:
 - Slots to prevent vibration

Slots for divider

Structural Integrity

Integration and Retention

- Stainless steel heat-set inserts installed in the base of the nosecone
- #6-32 pan head screws with lock washer
 - Lock washer used to reduce likelihood of screw loosening from vibration
- Payload remains mounted to nosecone throughout the entire duration of flight

#6-32 x 0.266" Heat-set Inserts #6-32 x ½", Externaltooth Lock Washer

Critical Design Attributes

Structural Integrity A L STEMnaut Safety Data Collection Data Transmission

2025 NASA Student Launch: Payload

Recovery

STEMnaut Safety

Retention Method

- Mounted in bottom most chamber
- Dovetail joint to secure payload
- Screw to lock STEMnauts on dovetail
- 3D printed PLA

Survivability Metric

- Internal Measurement Unit (IMU) secured on back of STEMnaut
- IMU used to measure acceleration and displacement

Donovan Dwight

Critical Design Attributes

STEMnaut Safety Ð Data Collection Data Transmission Recovery

Structural Integrity

Data Collection Board Layout

- Located in middle chamber
- Main components:
 - IMU
 - Altimeter
 - Microcontroller
 - Inter-tray connectors
 - Arm switch

Data Collection Board Layout

- Located in middle chamber
- Main components:
 - Internal Measurement Unit
 - Altimeter
 - Microcontroller
 - Inter-tray connectors
 - Arm switch

Inertial Measurement Unit (IMU)

Data Collection Board Layout

- Located in middle chamber
- Main components:
 - Internal Measurement Unit
 - Altimeter
 - Microcontroller
 - Inter-tray connectors
 - Arm switch

<u>Altimeter</u>

Data Collection Board Layout

- Located in middle chamber
- Main components:
 - Internal Measurement Unit

Microcontroller - Teensy 4.1

- Altimeter
- Microcontroller
- Inter-tray connectors
- Arm switch

Data Collection Board Layout

- Located in middle chamber
- Main components:
 - Internal Measurement Unit
 - Altimeter
 - Microcontroller
 - Inter-tray connectors
 - Arm switch

Molex KK Cables

Dwight

Donovan

Data Collection Board Layout

- Located in middle chamber
- Main components:
 - Internal Measurement Unit
 - Altimeter
 - Microcontroller
 - Inter-tray connectors
 - Arm switch

Arming Screw Switch

Donovan Dwight

Data Collection

Board securement

- Boards mounted on trays
 - #2-56 x 1/4" hex body standoffs
 - #2-56 locknuts
- Trays mounted on chamber divider
- Chamber divider mounted to capsule

Data Collection Software

- SD card telemetry:
 - Post flight analysis
 - Event logging
 - Blackbox telemetry
- Hardware in the loop
 - Hardware/backdoor selection
 interface for peripherals
 - SD card data-based simulation

Critical Design Attributes

STEMnaut Safety Data Collection Data Transmission Recovery

Structural Integrity

A占

Data Transmission

Transmission Board Layout

- Located in top chamber
- Main components:
 - Radio Frequency (RF) Module
 - Antenna
 - Power screw switch
 - Battery connector

Data Transmission

Transmission Board Layout

- Located in top chamber
- Main components:
 - Radio Frequency (RF) Module
 - Antenna
 - Power screw switch
 - Battery connector

<u>RF Module</u>

Data Transmission

Transmission Board Layout

- Located in top chamber
- Main components:
 - Radio Frequency (RF) Module

Antenna

- Antenna
- Power screw switch
- Battery connector

2025 NASA Student Launch: Payload

Data Transmission

Transmission Board Layout

- Located in top chamber
- Main components:
 - Radio Frequency (RF) Module

Power Screw Switch

- Antenna
- Power screw switch
- Battery connector

Data Transmission

Transmission Board Layout

- Located in top chamber
- Main components:
 - Radio Frequency (RF) Module
 - Antenna
 - Power screw switch
 - Battery connector

Battery Connector

Data Transmission

Board securement

- Boards mounted on trays
 - #2-56 x 3/16" hex body standoffs
 - #2-56 locknuts
- Trays mounted on chamber divider
- Chamber divider mounted to capsule

Data Transmission

Data Transmission Software

- Post flight SD card analysis
 - Remove outliers
 - Smooth data
 - Fit to known model
 - Compute required flight parameters
- Transmission packets
 - Single transmission per flight parameter
 - Duplicate packets

Neil Maldonado

Critical Design Attributes

Structural Integrity STEMnaut Safety Data Collection Data Transmission Recovery

Recovery

Situation

- Nearly lost vehicle during subscale testing
- GPS and high-power RF hardware on board to aid recovery efforts

Rocket Recovery Subsystem (RRS)

- The RRS program upon landing transmits GPS
- Low GPS visibility will transmit, chirps to the directional antenna

Launch Site Single & multidirectional antenna

0.5 mi

2025 NASA Student Launch: Payload

37

transmissions

Payload sends GPS

Landing Site

or chirp

Payload Design

Neil Maldonado

Flight Demonstration One

Detection System Anomaly

Takeaways and Lessons Learned

Structural Integrity

- All payload systems survived
- Improve pressure equalization capability

STEMnaut Safety

Revisit cable housings

Data Collection

- Improve detection system
- Backup logging system

Transmission

• Rewrite transmission protocol

Flight Demonstration Two

Sunday, March 23 in Samson, AL

Flight Overview

- Main parachute deployment at apogee
- Safe landing

<u>Results</u>

- No damage
- Flight data for all sensors
- Accurate detection of flight events
- No transmissions observed or received
- Payload unresponsive upon recovery

Budget Updates

AIAA Budget

- Source of funds for all purchases thus far
- Remaining funds will be reallocated to Team 508

COE Budget

- Plans to use for testing
- More than \$500 to be spent on Nylon-12 for backup payload parts
- Remaining funds will be reallocated to Team 508

Future Work

Thank you for listening!

2025 NASA Student Launch: Payload

Subscale Testing:

Intact heat inserts post launch

Subscale Flights 1 & 2

- Recovery system failure
- Heat inserts in nylon-12 parts performed remarkably
- Demonstrated flight stability of the rocket with payload mass simulator

Adversarial terrain

Successful payload mass simulator

Subscale Flight 3

- Demonstrated successful recovery of the payload mass simulator
- Locating the rocket took several hours due to auditory locator failure and adversarial terrain

Initial Design Overview:

Structural Design Overview

- Structural Body SLS-printed Nylon-12
- Mounting Method AL6061 bracket, epoxied to nosecone
- **Chambers** Three separate areas for Data collection, Transmission, and STEMnauts
- Electronics Stored on trays inside the capsule

Electrical Design Overview

- Electronics Trays RF, Sensor, STEMnauts
- Sensors Payload IMU, Altimeter and STEMnaut IMU's connected via I2C
- Transmitter APRS tracker
- Antenna 50cm copper wire

Transmitter Glitch

"STEMnaut"

"STEMnaut"

Nathan Hardie

Structure Design

Electronics System Assembly:

Payload System Assembly:

2025 NASA Student Launch: Payload (BACKUP SLIDE)

Data Collection Design

Sensor Fusion by Multi-Sensor Kalman Filter

- IMU Readings Accurate dead-reckoning navigation
- Altimeter Readings Frequent vertical positioning
- GPS Readings Provides infrequent absolute positioning
 Single Sensor Data
- Temperature Readings Temperature sensor on the Altimeter
- **Power Readings** Power supply connected to ADC
- Time Hardware timer on the microcontroller

Sensor Fusion Block Diagram

	Eight Pieces of Required Data			
Data that uses Sensor Fusion	STEMnaut Survivability	Temperature of landing site]	
	Apogee Reached	Orientation of on-board STEMnauts	Data with a	
	Landing velocity, G-forces sustained	Time of landing	single source	
	Maximum velocity	Battery check/power status		

Electronics Block Diagram

2025 NASA Student Launch: Payload (BACKUP SLIDE)

FAMU-FSU

College of Engineering

Software Design

LightAPRS with Atmega1284P-AU Microcontroller

- Timers 2x 16-bit hardware timers (one dedicated to time of landing)
- **I2C Pins** 1x set available on LightAPRS
- Core 1x Low-Power 8-bit AVR Microcontroller

Payload Software Requirements

- Time Sensitive Sensor readings, Sensor Fusion, Data Loging
- I2C Sensors 5xIMU, Altimeter
- **Simultaneous** Flight Monitoring, Sensor Fusion, Data Interpretation, Logging

ZenithOS Framework

- Multitasking Allows for multiple independent programs: Flight monitor, Data logger, Sensor fusion, Data interpreter
- Resource Allocation Manages tasks, logging, CPU time, and peripheral requests for multiple programs
- User Interface Terminal interface allows the user to start/stop programs, run diagnostics, and send commands at runtime
- Hardware Abstraction A single implementation can be thoroughly tested and used by all programs

ZenithOS Block Diagram

Landing Condition Calculations

Analysis:

- Landing conditions of rocket (orientation and velocity) obtained from simulation
- Mass of payload know (1.41 lbs)
- Impact time (*dt*) assumed:
 - 10 50 microseconds
 - Tall grass at launch site provides cushion
- Combined load: 130 150 lbf

$$F = ma = m\frac{dv}{dt}$$

 $m = 1.406 \, lbm$ $v = 15 - 20 \, mph$ $dt = .01 - .05 \, sec$

Preliminary Analysis

Hypotheses	Evidence For	Evidence Against
Overheating	 Event log and Blackbox end at computationally intensive steps Long preflight activities on a hot day Slowed SD card logging 	 Altimeter temperature readings of 108F 250F operating temperature Multiple transmission steps recorded
Program Crash	 Missing data for sensors on transmission board Unexpected symbols in analysis file Power cycling restored the payload 	 Successful HIL processing of analysis file Multiple transmission steps recorded
Power Issues	 Last telemetry recorded during transmission step 	 No program reset observed Nominal post flight battery voltage

Software Changes After Flight Demonstration One

Manufacturing Errors

Payload Chamber Divider SLS Printing Error Analysis				
Feature	Designed Dimension (in)	True Dimension (in)	% Error	
Wall Thickness	0.125	0.135	7.41%	
Tray Mounting Hole Dia.	0.150	0.149	0.66%	
Dovetail Max Width	0.250	0.249	0.40%	
Dovetail Min Width	0.125	0.140	12.0%	
Dovetail Height	0.125	0.131	4.80%	

Payload Capsule SLS Printing Error Analysis					
Feature	Designed Dimension (in)	True Dimension (in)	% Error	P	
Outer Diameter	3.800	3.798	0.05%		
Wall Thickness	0.250	0.260	4.00%		
Flange Thickness	0.250	0.262	4.80%		
Mounting Hole Dia.	0.150	0.155	3.33%		

- Expected that positional tolerance was higher than expected
- Plans to perform tolerance stack-up analysis and modify dimensions

Tolerance Stack-up Analysis

Tolerance Analysis

- Difficult finding tolerance specs for Fuse1+ SLS system
- Assumptions made based on data sheet
- Plans to create excel spreadsheet to perform analysis

1.0 mm

MINIMUM HOLE DIAMETER

1.0 mm

Holes with a diameter less than 1.0 mm may close off during printing.

Note: For precisely concentric holes, design an undersized pilot hole and use a reamer to open the hole to its intended diameter.

MINIMUM ASSEMBLY TOLERANCES Features less than 20 mm²: 0.2 mm

Features greater than 20 mm²: 0.4 mm

Leave a slight clearance between printed parts intended to mesh or interface after printing, like assembly joints or gears.

"Assumed" SLS Printing ToleranceGeneral Tolerance± .006Positional Tolerance± .008Angular Tolerance± 2°

INTEGRATED ASSEMBLY CLEARANCE

Features less than 20 mm²: 0.3 mm Features greater than 20 mm²: 0.6 mm

For parts that will be printed together in an integrated assembly, leave clearance to prevent the parts from fusing together during the print.

